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1.1 Overview

♦ Perchlorate (ClO4
-) is the anionic component of various salts

(NH4ClO4, NaClO4, KClO4)
Results from the dissolution in water:

e.g. NH4ClO4 => NH4
+ + ClO4

-

♦ ClO4
- salts are strong oxidizers, used in a variety of industrial

applications
♦ Generally very stable and mobile in groundwater systems
♦ ClO4

- presents significant challenges in cost-effective remediation



2.0 CHARACTERISTICS
OF PERCHLORATE
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2.1 Reduction Pathway

OXIDIZED 
ClO4

- 
=> ClO3

- => ClO2
- => ClO- => Cl2 => REDUCED 

Cl- 
Cl(VII)  Cl(V)  Cl(III)  Cl(I)  Cl(0)  Cl(-I) 

Perchlorate  Chlorate  Chlorite  Hypochlorite  Chlorine  Chloride 
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2.2 Mobility/Stability
♦ Mobility – generally very mobile:

− Highly soluble (NH4ClO4: 200 mg/L)
− Stable in many (most) subsurface environments
− Negatively charged, little/no affinity for soil minerals (low soil-

water partition coefficient value)
♦ Stability – generally very stable:

− Does not readily biodegrade under most conditions and can
persist for many decades.

− Highly oxidized
− The most stable Cl species/compounds are those in which the

element is in its highest or lowest oxidation state.
− While ClO4

- is a powerful oxidizing agent when heated, at room
temperature (characteristic of groundwater), aqueous solutions
of ClO4

- are not notable oxidizers and are extremely stable.
− Non-volatile

EXCEPTION: Subsurface environments enriched with organic matter
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2.3 Destruction
♦ Reduction of ClO4

-:
ClO4

- => => => => Cl- + 2O2
♦  Non-biological Reduction

− Can be thermodynamically favored, but rate limited (chemical
treatment)

− Requires significant energy input (heat/pressure, electrical current) as
well as an electron donor (substrate)

♦ Biological Reduction
− ClO4

- serves as a terminal electron acceptor in microbial respiration
− Requires an energy source (electron donor)
− Appropriate environmental conditions

• ClO4
- reduction will occur following consumption of more energy-

efficient electron acceptors
Electron acceptor Product Eh(meas)(mV) 

O2 H2O 600 to 400 
NO3

- NO2
- 500 to 200 

Mn4+ Mn2
+ 400 to 200 

Fe3+ Fe2
+ 300 to 100 

SO4
2- H2S 0 to -150 

Organic Compounds (Fermentation) H2, CH4 -150 to -220 
 
ClO4

- reduced concurrently with or immediately following NO3
-. 
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2.3 Destruction (Cont’d)

♦ Hypothesized pathway for the biological reduction of ClO4
-:

ClO4
- 

  
  
  
 ClO3

- 
  
  
  
 ClO2

- 
  
  
  
 Cl- + O2 
 

e- donor

CO2, H2O, Biomass 

CO2, H2O, Biomass 

e- donor

Chlorite Dismutation 



3.0 REMEDIATION APPROACHES
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3.1 Approaches

♦ Approaches
− In situ
− Ex situ

♦ Overall Approach
− Selection of a cost-effective approach (in situ or ex situ) is

highly dependent on site-specific requirements
− Combination of approaches may be needed
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3.2 In Situ Approaches

♦ For remediation without extracting groundwater
− Bioremediation
− Phytoremediation
− Physical/Chemical
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3.3 Ex Situ

♦ For extracted groundwater, either in wellhead treatment
scenarios or remediation scenarios

− Physical/Chemical Technologies
• Ion Exchange
• Membrane Processes
• Electrochemical Reduction

− Biological Technologies (Bioreactors)
• Fluidized Bed Reactors
• Continuous Stirred Tank Reactors
• Suspended Bed Reactors
• Packed Bed Reactors



4.0 SUMMARY OF EX SITU
TREATMENT TECHNOLOGIES
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4.1 Ex Situ Ion Exchange

Approach
♦ ClO4

- (along with other anions) is sorbed on positively
charged IE resin

♦ Many different resins have been developed/used
♦ Types of resins:

− Acrylic resins, with regeneration (brine) using NaCl
(5-7% strength). Spent brine requires disposal.

− Styrenic resins (more perchlorate-specific than acrylic),
regeneration not economical, resin is disposed

− Perchlorate-specific resins, with regeneration using FeCl3 +
HCl, brine is disposed
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4.1 Ex Situ Ion Exchange (Cont’d)

♦ Amount of regenerant (for acrylic) can be 0.2-10% of
influent flow, for perchlorate-specific resins can be less than
0.01% of influent flow

♦ Regenerant (brine – for acrylic resins) must be treated or
otherwise disposed

− Calgon PNDM (not well proven)
− Biotreatment (very difficult, long retention times required, may

not be cost effective)
− Brine line (questionable approach)

♦ Configurations
− Large vessels (800 ft3+), resin is changed out
− Small vessels (36 ft3 to 60 ft3), resin is changed out, or, vessels

are replaced.
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4.1 Ex Situ Ion Exchange (Cont’d)

Success
♦ Currently the furthest along, implemented at several sites.

Costs can range from $100 to over $1,000 per acre foot
(highly dependent on nitrate/sulfate and other ions -
competition)

♦ Has regulatory buy-in (DHS)
♦ Can be implemented for high volume low concentration

scenarios (well head treatment)
♦ Can also be implemented for low volume high concentration

scenarios
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4.2 Ex Situ: Membrane Processes –
Reverse Osmosis/Nanofiltration
Approach
♦ ClO4

- (along with all dissolved constituents) are removed
through use of semi-permeable membranes

♦ Dissolved constituents are collected in a concentrated
rejectate

♦ Rejectate flow can average 5-20% of influent flow
♦ Rejectate must be treated or otherwise disposed, biotreatment

more likely than with IE brine (no added salts)
♦ Depending on the water quality (TDS concentration),

significant pre-treatment may be required
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4.2 Ex Situ: Membrane Processes –
Reverse Osmosis/Nanofiltration

(Cont’d)

Success
♦ No data available on full scale systems
♦ Pilot tests have indicated ability to remove perchlorate to low

levels
♦ Laboratory bench-scale tests indicate that rejectate is

biologically treatable to ND
♦ Costs are expected to range from a few to several hundred

dollars per acre foot
♦ Rejectate treatment and energy costs are primary drivers for

O&M cost.
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4.3 Ex Situ: Biotreatment -
Bioreactors

Approach
♦ ClO4

- is used as an alternate terminal electron acceptor in
respiration following depletion of oxygen, and is destroyed

♦ ClO4
--reducing bacteria are present as a biofilm suspended

freely or on media within a vessel or vessels.
♦ As the contaminated influent passes through the system,

bacteria are fed an organic substrate (electron donor), and
couple oxidation of the substrate with reduction of ClO4

- (as
well as oxygen and nitrate, if present)

♦ The effluent from this system is free of perchlorate, and can
be disposed of appropriately.
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4.3 Ex Situ: Biotreatment –
Bioreactors (Cont’d)

♦ Different types of bioreactors:
− Fluidized bed reactors (FBRs)
− Continuous stirred tank bioreactors (CSTRs)
− Packed bed reactors (PBRs)
− Suspended bed reactors (SBRs)
− Hydrogen-fed bioreactors
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4.3 Ex Situ: Biotreatment –
Bioreactors (Cont’d)

Success
♦  Has been implemented at several sites. Costs can range from

$100 to over $500 per acre foot (dependent on nitrate).
Typically lower O&M than ion exchange and reverse
osmosis (in non-potable water scenarios)

♦ Has “conditional” regulatory buy-in (DHS)
♦ Can be implemented for high volume low concentration

scenarios (well head treatment), DHS buy-in would likely be
difficult

♦ Can also be implemented for low volume high concentration
scenarios
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4.4 Summary
Technology Advantages Disadvantages Relative costs 

Ex-Situ Ion 
Exchange 

• Produce potable water 
• Predictable performance 
• Applicable to wellhead 

treatment 
• Has regulatory buy-in 

• ClO4- transferred to brine 
• Waste stream (brine) 

produced requiring further 
treatment (1% to 10% by 
volume) 

• Relatively high, generally 
recommended for well-head 
treatment. $150/AF for low 
nitrate/sulfate site. 
>$500/AF for high 
nitrate/sulfate site 

Ex-Situ Membrane 
Processes 

• Produce potable water 
• Applicable to wellhead 

treatment 
• Predictable performance 
• Applicable over a wide 

concentration range 
• Regulatory buy-in not 

foreseen as a problem 

• ClO4- transferred to 
rejectate 

• Waste stream produced 
requiring further ClO4- 
treatment (Rejectate, 5-10X 
TDS of treated 
groundwater); disposal 

• High waste stream volume 
relative to IE (5% to 25%)) 

• Relatively high, expected to 
be competitive with IE for 
well-head treatment in most 
cases 

Ex-Situ 
Bioreactors 

• Destroys ClO4-  
• Little/no waste stream 
• Applicable over a wide 

concentration range 

• Not applicable for drinking 
water applications (lack of 
regulatory buy-in) 

• Relatively low, generally 
recommended for cases 
where hydraulic control is 
required, effluent can be 
spread or re-injected. 
<$100/AF for above low 
nitrate site. <$400/AF for 
above high nitrate site 

 



5.0 CONCLUSIONS



25

Conclusions

♦ ClO4
- presents significant challenges to cost-effective

remediation (soluble, mobile, stable)
♦ Selection of cost-effective approach highly dependent on

site-specific requirements
♦ Ex situ biological treatment show promise, most cost-

effective (non-drinking water applications)
♦ Ion exchange appears to be method of choice for ex situ

(particularly for drinking water applications)
♦ Membrane processes may be most cost-effective for some

sites


